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This paper presents an approach to wave propagation inside the Fabry-Pérot framework. It states that the
time-averaged Poynting vector modulus can be nonequivalent to the squared-field amplitude modulus. This
fact permits the introduction of a kind of nonlinear medium whose nonlinearity is proportional to the time-
averaged Poynting vector modulus. Its transmittance is calculated and found to differ from that obtained for a
Kerr medium, whose nonlinearity is proportional to the squared-field amplitude modulus. The latter empha-
sizes the nonequivalence of these magnitudes. A space-time symmetry analysis shows that the Poynting
nonlinearity should be possible only in noncentrosymmetric materials.
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[. INTRODUCTION counterpropagating waves. Chen and Mills derive a two-
. L . coupled-equation system for the field amplitude modulus and
A classical topic in electromagnetism is the study of wavephase together with general boundary conditions, thus ob-
transmission in a finite parallel-plane-face medium, known,ining an analytic-transcendental solution for the transmit-
as a Fabry-Pérot resonator. When the medium presents Nopce of the NLFP resonator.
linear behavior, blsf[ablhty appea[’@;]. To explain this phe- On the other hand, their work permitted us to note an
nomenon, the nonlinear Fabry-PE(dLFP) resonator was jmpjicit difference between the time-averaged Poynting vec-
modeled by a third order susceptibility or Kerr-type nonlin- 1o modulus, i.e., the electromagnetic radiation intensity
earity [2]. At monochromatic plane wave excitation, the 5nq the squared-field amplitude modul(&[?) inside the
NLFP stationary regime is summarized in @ non-time-,,njinear medium. If the nonequivalence of these magni-
dependent nonlinear wave equation for the complex field,qes were true, it could change certain well-established fun-
amplitudes, the nonlinear Helmholtz equatidhLHE).  yamental concepts in classical electrodynamics. This fact
I-_|enpe, the reﬂectance_ and .transmlttar?ce problem reduces fQotivated us to develop a different approach to wave propa-
finding the NLHE solution with appropriate boundary condi- 4ation in nonlinear media inside the Fabry-Pérot framework,
tions for the field ampllt.ude modulus ano_| phase. called theS formalism It introduces a variable related to the
The NLHE complexity led to approximate methods of e _averaged Poynting vector which states that its magni-
resolution. Many approaches consider two counterpropagafyje can be nonequivalent to the squared-field amplitude
ing waves in the medium and the analysis is done by sepag,qqyius, contrary to the common usage. FurthermoreSthe
rately considering the effects on each wdes]. Unfortu-  tormajism presents two important advantages: it permits one
nately, the linear superposition principle is no longer valid iny, girectly monitor the radiation intensity within the medium,

nonlinear media and the separation of the electromagnetig jt ayoids approximations, such as the SVEA, simplifica-
field in these back and forth waves is meaningless. As @qn o boundary conditions, and so on.

result, the NLHE separation into two equations, one for €ach 1 fact that the time-averaged Poynting vector modulus
wave, is only possible by neglecting various coupling non-g honequivalent to the squared-field amplitude modulus, as
linear terms that would give an important contribution to theyha s formalism will show, implies that the nonlinearity of
accuracy of the transmittance results. Moreover the slowly e tyne media is not proportional to the intensity, which is
varying envelope approximatioiSVEA) is often applied 0 ¢,htrary to what has been established to date. This assertion
these wave$2—4] but, within the counterpropagating wave |gaqs to the following question regarding the modelling of
approach, its validity was questiongal. Also, the boundary e NLFP resonator: Is it a Kerr-type nonlinearity, or does it
conditions were simplified rather than rigorously trgaatedvary proportionately to the intensity? As this question does
[2,6]. The above facts suggest that all these approximatefl'have a definitive answer, the existence of the latter can-
approaches cannot physically be equivalent to the exagiyi pe denied. Then, we define tReynting mediunas a
problem. medium where the nonlinearity is proportional to the inten-

The work done by Chen and Mills exactly solved the gty Thys, our objective is to solve the Poynting NLFP prob-
NLFP problem for an absorptionless Kerr-type medifh 1o through thes formalism, comparing the resultant trans-

The proper resolution method was to assume a general cofsitiance with that obtained for a Kerr NLFP resonator to
plex field within the medium, disregarding the concept ofyemark the nonequivalence between squared-field amplitude
modulus and radiation intensity.
In Sec. Il, we derive thes formalism in the following
*Corresponding author. Electronic address: agl@fisica.ufpb.br form. First the time-averaged Poynting vector assuming har-
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_ikozz =0 z=d The time-averaged Poynting vectdE,(z,t) X H,(z,t))
EOI‘C Nonlinear can be easily calculated with the aid of Faraday’s law, giving
Reflected medium ©
plane aye i0(2) AN (8= —— m{ [E22] L2 H, (5)
AVAVAVAY) Eoe(z)e plane wave 2w 0z

Voot Eotelk‘)Z where g is the vacuum permeability. From this expression
plane wave ] we calculate the intensities for the three regions:

z
E‘Oeikol yO—' (S =lg(1=r3, (6a)
N Jo . J
e Y N o (9(]5(2)
Region I Region II Region III (S =1okg 52(2)7 =1,92), (6b)

FIG. 1. A harmonic plane wave strikes a nonlinear Fabry-Pérot
resonator, to be reflected and transmitted. Regions | and Ill consti- (O = |O|t|2, (60)

tute, for simplicity, the same linear dielectric medieng., aij. ) ] o ) ] )
wherely=KoEf/ (2uqw) is the incident intensity. In region I,

monic fields is calculated. Then, a dimensionless variablgq' (6b) defines the dimensionless field variable

that is proportional to intensity is introduced. Thus, a set of )
field evolution differential equations and the general bound- S=ky £2—, (7)
.. . L. . . 0z
ary condition equations on this field variable are obtained,
which constitute thé& formalism. In Sec. IIl, our approach is directly related to the intensity inside the medium, which
applied to derive the transmittance for the Poynting NLFPwill characterize th&formalism. From Eq(7) it is clear that
resonator and the results compared with those obtained forif ¢ is not a linear function og, as often happens in nonlin-
Kerr NLFP resonator. A brief discussion about the possibilityear media, thet$ and£? are nonequivalent.
of existence and observation of Poynting media is given. The next step is to derive the NLHE in terms of the clas-
Finally, in Sec. IV, we conclude. sical field variables(&, ¢), and transform it into a set of
equivalent equations in terms &,S). The NLHE is derived
Il. THE S-FORMALISM APPROACH from the macroscopic Maxwell equations complemented by
Referring to Fig. 1, we start writing the linearly polarized appropriate constitutive relations. We assume that the polar-
transversal harmonic electromagnetic fields of frequeacy izationP and current density vary only in the electric field
as direction with frequencyv, neglecting higher harmonics, and
Lrcors ot R their spatially-dependent complex amplitudes satisfy the fol-
Ed(zt) = 3[Ef(2e™ +c.cli, (18 |owing constitutive relations:

Ho(zt) = %[Hf(z)e'i“’t + C.C.]j\, (1b) Pi(2 = 60Xger[z! EILr!HI(T]EILIU(Z)i (8)

WhergE;?(z) andH¢(2) are the non—t_ime—dependent complex I = oged 2 E[} HITE (D), 9)
amplitudes for¢=I,11, 1ll. From region |, a plane wave of ) o
amplitude E, and wave vectok, impinges perpendicularly Wheree is the vacuum permittivity anflgenandogeqare the
on a nonmagnetic, isotropic, and spatially nondispersive medéneralized susceptibility and conductivity, respectively,
dium of thicknesdd (region I1). The optical field is assumed WhIC.h are reall and contain the linear as well as a _possmle
to maintain its polarization along this region so that a scalafonlinear medium response. Note that the constitutive rela-
approach is valid. The reflected and transmitted plane wavdions are not explicitly written since cases could exist where
have amplitudesE, andtE, with r andt the complex reflec- it is not possible to describe the nonlinear polarization and
tion and transmission coefficients, respectively. Then, in recurrent density by the classical electric field power expan-
gions | and IIl the spatially-dependent complex amplitudesSion- Thereby, the scalar NLHE is
are given by o2
2 H w —
E“(2) = Eo(eikoz+ re—iKOZ) 2) E + ko(l +Xger) T lopgogen E“(Z) =0. (10)

&) This equation constitutes the starting point to study several

linear and nonlinear monochromatic wave propagation phe-
Similarly to Ref.[7], in region Il, we write down the follow- nomena within the Fabry-Pérot framework. Substituting Eq.
ing ansatz for the spatially-dependent complex amplitude of4) into Eqg. (10) and using Eq(7), we derive the following

El (2) = Egte*e?,

the electric field: set of spatial evolution equations for the field variakiés
E{(2) = Eo(2)€4?, (4 ands:
2 2
where the dimensionless amplituéiéz) and phasep(z) are d_g + 2( 1+ 7 £.9)E - §) -0 11
both real functions of. dZ kol (4 + Xger 2,£,S] £ ' (113
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dS w - resonator with boundary conditions at the interfac&ss no
d_z*'k_oﬂo‘fger[Z*‘S'S]E =0. (11b longer equivalent ta€?, not even for the linear dielectric
case, becaus®is a constant ané? is an oscillating function
To guarantee the physical content of the solution, thesef z [8].
equations must be necessarily complemented with the fol-

lowing boundary conditions: the continuity of the tangential Iil. THE POYNTING MEDIUM
components of the electric and magnetic field at the inter- A. Constitutive relations and transmittance results
faces. The general boundary conditions were rigorously de- , ) . ) )
rived in Ref.[7]: four equations as functions ¢€,¢) at z At this point, we introduce _the Poynting medium by the
=0 andd which, by using Eq(7), are transformed into three following constitutive relations:
equations in terms of the variablé$,S) to give Xgean(l) +1,32), (15)
5(0))2 ( 1d€ )2
EO)+—= | +| —— =4, 12 =
< © £(0) ko dz| - (129 Ogen 0, (16)
where y is the nonlinear coefficient. Equatioi$l) have a
S(d) - £4(d) =0, (12b) simple analytical solution given by
e S2) =%, (17)
= =o. (120
el R %
From Egs.(6) and(12), the transmittance is obtained as €2 = 2 1- k_i co42ky(z-d)]+1 +k_1 . (19
T=[t?=Sd), (13) where y>0 and k2=k3(1+xV+1,S). The constans, is
and the energy conservation is guaranteed thorough the efixed by
pression K K
_A)e Kile _ 4=
[r[?+[t}>=1-[S(0) - S(d)]. (14) (1 k§>5(0)+(3+kg)80 4=0. (19

This equation establishes that the reflectance and transmig¢ompining Egs(18) and (19), the transmitance can be ex-

tance are limited by the boundary values of the time-pressed in a similar fashion as for the linear Fabry-Pérot
averaged Poynting vector. For a nonabsorbent me®n  esonator as

=5(0), then|r[>+]|t|*=1.

Equations(11) and (12) represent theS formalism; they T= 1 (20)
were derived without assuming approximations such as 1+F sirf(k,d)’
oy Toone. ars 50 on. s e -y " hereF =l 1k k). carlul noting a0
represents the time-averaged Poynting theorem applied to ti® @ transcendental expression silkgelepends ors,
problem of harmonic fields simplifying the interpretation of Now, we compare the transmittance results for the Poyn-
Tgenas the dissipation properties of the medium. In particutn9 and Kerr media. The latter are defined by
Igr, whenoge,=0, the d|men§|_onless intensig/is a constant Xgen= Y+ 91,82(2), (21)
fixed by the boundary conditions. Furthermore, thro&#)
it is possible to monitor directly the intensity along the me-
dium as a function of the spatial coordinate, as opposed to
using the conventional formalism. The Kerr NLFP transmittance results were taken from

The S formalism is useful to analyze the linear case asRef. [7]. Figure 2 showsT against the nonlinear parameter
well as the nonlinear one. Before studying the latter, i.e., theyl, for two different values ofy™. Figures 2a) and 2b;)
comparison between the Poynting and Kerr media in an efeorrespond to the Poynting and Kerr medium, respectively.
fort to show the explicit difference betweeéh(or I) and &2 From these figures, it is apparent that the transmittance of the
(or |[E?)) in nonlinear media, we refer to the linear case. Ac-Poynting NLFP as well as of the Kerr NLFP resonator is
cording to our analysi$8], there are only two situations multistable. However, for increasing values)@?, the peak
where the relationship=ctdE?| holds true. First, a single transmittance separation diminishes for the Kerr medium
plane wave propagates in an infinite or semi-infinite linearwhile it increases for the Poynting medium. Also, the Kerr
dielectric characterized byge=0 andyge=x'Y wherex¥  multistability appears for the smallest values of the nonlinear
is the linear susceptibility. Under these conditions, Ed$) parameteryl . The transmittance difference of the two media
relate the constants and £ by S=(1+x)¥2 £2. Second, a emphasizes thé and |E|? nonequivalence. Figure 3 depicts
single plane wave propagates in a semi-infinite linear abthe dependence of on the dimensionless thicknekgd(1
sorber characterized hyer=x'Y andoge=o whereo is the  +x\%)¥2/(2m) enhancing the nonlinearity difference of the
Ohmic conductivity and such tha(z) = £2(z), both being  Polynting and Kerr media. Note that the departure from an
proportional to a decreasing exponential functionzofOn  Airy-type function for the Kerr medium is stronger than that
the contrary, when the medium is finite, e.g., a Fabry-Pérofor the Poynting medium.

Tgen=0. (22)

056614-3



A. LENCINA AND P. VAVELIUK PHYSICAL REVIEW E 71, 056614(2005

1 . 1
1(;8\} \-(I)-e \1\ \ = Y
) ) <,
06 06 A I N N S, B |
' ' A WY
04 04 >?3 ARV R EE ] ﬁ\ (AN
0.2 0.2 YR SR TSR
- [ 1A 1
al YIn bl 'YIo \\‘\,'Iu A #'\ }, .I": '2“ \"./'I \
c 2 4 6 8 MW 0 2 4 & 8 W Thans wins iy st

T A T1 ~ 02 04 06 Q8 1
0.8 0.8 \ z/d
06 06

04 04 FIG. 4. Nonlinear susceptibility against dimensionless spatial
02 g 02|h coordinate for each of the three solutions compatible with the
2 v, 2 Lo boundary conditions. Continuous line: Poynting medium. Broken

0 2 4 & 8 1 0O 2 4 6 8 1 line: Kerr medium. The parameter values atg=9, y'V'=1.25, and

) . ) kod as defined in Fig. 2.
FIG. 2. Transmittance against nonlinear parametefgoiPoyn-

ting and(b;) Kerr medium withkod=2. Fori=1, x?=1.25; and -

i=2 D= 1
72528 CINEE f [E(Lt) XH(rt))dt,  (24)
t
On the other hand, Fig. 4 shows that the Poynting nonlin-

ear susceptibilityxgen—x(l) has a constant value along the yvhereE andH are harmonics of period=27/w and time

medium(z coordinate. In return, the Kerr nonlinear suscep- interval T>.T' The sgsceptibility t‘?”SOf transforms as even
tibility varies periodically. This fact implies the formation of ;Jndertsp&malpmvetr.smna _tr and Smte rtgversal—> L E_:jon- |

a phase grating in the Kerr medium in contrast to the Poyn-r?]ryh? ef oyn mgd(;/ec gr an tl'sl _me-qveragz " value,
ting medium. Perhaps this substantial difference can be medy 'CN tranSIofm as odd Under spatial INVersion and ime re-

sured, and this could be the starting point to experimentall;yersal’ .e.(S(r, 1)) —~(S(-r, 1)) and(S(r ,)) —~(S(r, 1)),
identify a Poynting medium. respectively{10]. Then, a medium possessing a linear con-

nection betweeny; and(S), should benoninvariant with
) _ _ respect to spatial inversion and time reversal. Otherwise, the
B. Transformation properties under spatial space-time symmetry will be violated in the constitutive re-
inversion and time reversal lation [Eq. (23)].

It is a fact that several unusual types of nonlinearities The lack of parity symmetry under inversion of coordi-
were predicted before its experimental observation, as walates is a property of materials without inversion center, i.e.,
remarked, for example, in the pioneer works of Baranewva Poynting nonlinearity should be only possible moncen-
al. [9]. With the aim to elucidate the isotropic medium re- trosymmetrianaterials. There are several material candidates
quirements to observe these phenomena, those authd@possess a Poynting nonlinearity, such as, for example, cu-
pointed out the necessity of an analysis of transformatiofic crystals with zinc-blende structure like GaAs, InSb, and
properties of electromagnetic quantities under rotation, spadthers. In these materials intensity-dependent transmission
tial inversion, and time reversal. Therefore, this symmetryand bistability were experimentally observieid]. Also, iso-
analysis is also necessary to delimit the Poynting mediuntropic homogeneous liquids formed by nonracemic mixtures
requirements. or solutions of mirror-asymmetri¢chiral) molecules with

The magnitude that characterizes the electromagnetic rétrong nonlinear optical susceptibility, as products of several
sponse of a Poynting medium is their nonlinear susceptibilitynonlinear process¢2], are also feasible systems to possess
X(P) which is linear on the time-averaged Poynting vectora Poynting nonlinearity. In addition, parity under time rever-
(S), as follows from the constitutive relatiofigq. (15)]. Ina  sal should be violated in Poynting media. This means that

general form, it can be written as weak dissipative process that converts field energy into heat
. is necessary to remove the rule relating to the-t trans-
X = ¥in(S O, (23)  formation. For example, either very weak absorbtion or cur-

rent flow caused by an external quasistatic field, which basi-
cally do not affect the wave propagation at light frequeacy
would ensure medium noninvariance under time reversal.

T! T We believe that, although experimental work is required,
0.8 | 0.8 .. . . R
i the above preliminary analysis could stimulate further dis-
06 06 cussion regarding the existence of Poynting media.
a
1.5 2 25

with i,j,k=x,y,z and

0.4 04

0.2 0.2

b IV. CONCLUSIONS
3 15 2 25 3

k,d(1+¢")y/(2m) l,d(1+®)* /(2m) In summary, we derived a formalism in terms of dimen-
sionless variables related to the time-averaged Poynting vec-
FIG. 3. Transmittance against dimensionless thicknesgaor tor and field amplitude modulus within the Fabry-Pérot
Poynting andb) Kerr medium withy?=5.25 andyl,=2. framework. TheSformalism shows explicitly that the energy
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intensity and squared-field amplitude modulus are onlywhere the time-averaged Poynting vector must be rigorously
equivalents for a single plane wave propagating in a lineamonitored as in photoconductor or photorefractive materials.
infinite or semi-infinite medium. Otherwise, they are non-Further to this particular case studied here, this approach
equivalent. Additionally, theS formalism presents two im- |eaves open the possibility of physical results in actual topics
portant advantages: it permits one to directly monitor thepn nonlinear wave propagation such as spatial solitons, wave
time-averaged Poynting vector in the medium and it avoidsmixing, and others. Finally, we leave open the possibility that
approximations, such as the SVEA, simplification of theeyperimental techniques, based on intensity-dependent phase
boundary conditions, and so on. To emphasize this noNghanges of a Gaussian beam such asZisean technique
equivalence we introduce the Poynting medium, whose non- 31 might not truly measure Kerr-type nonlinearity. On the

linearity is proportional to the intensity instead of the electric : : .
' , ) . contrary, they could be measuring a Poynting-type nonlinear-
squared-field amplitude modulus as in the Kerr medium. W'ty insteyad y g yniing-typ

find marked disagreement in the transmittance of the two
media, which support the differences betwdeand |EJ2.

Also, a space-time symmetry analysis shows that the Poyn- ACKNOWLEDGMENTS
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