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This paper presents an approach to wave propagation inside the Fabry-Pérot framework. It states that the
time-averaged Poynting vector modulus can be nonequivalent to the squared-field amplitude modulus. This
fact permits the introduction of a kind of nonlinear medium whose nonlinearity is proportional to the time-
averaged Poynting vector modulus. Its transmittance is calculated and found to differ from that obtained for a
Kerr medium, whose nonlinearity is proportional to the squared-field amplitude modulus. The latter empha-
sizes the nonequivalence of these magnitudes. A space-time symmetry analysis shows that the Poynting
nonlinearity should be possible only in noncentrosymmetric materials.
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I. INTRODUCTION

A classical topic in electromagnetism is the study of wave
transmission in a finite parallel-plane-face medium, known
as a Fabry-Pérot resonator. When the medium presents non-
linear behavior, bistability appearsf1g. To explain this phe-
nomenon, the nonlinear Fabry-PérotsNLFPd resonator was
modeled by a third order susceptibility or Kerr-type nonlin-
earity f2g. At monochromatic plane wave excitation, the
NLFP stationary regime is summarized in a non-time-
dependent nonlinear wave equation for the complex field
amplitudes, the nonlinear Helmholtz equationsNLHEd.
Hence, the reflectance and transmittance problem reduces to
finding the NLHE solution with appropriate boundary condi-
tions for the field amplitude modulus and phase.

The NLHE complexity led to approximate methods of
resolution. Many approaches consider two counterpropagat-
ing waves in the medium and the analysis is done by sepa-
rately considering the effects on each wavef2–5g. Unfortu-
nately, the linear superposition principle is no longer valid in
nonlinear media and the separation of the electromagnetic
field in these back and forth waves is meaningless. As a
result, the NLHE separation into two equations, one for each
wave, is only possible by neglecting various coupling non-
linear terms that would give an important contribution to the
accuracy of the transmittance results. Moreover the slowly
varying envelope approximationsSVEAd is often applied to
these wavesf2–4g but, within the counterpropagating wave
approach, its validity was questionedf5g. Also, the boundary
conditions were simplified rather than rigorously treated
f2,6g. The above facts suggest that all these approximated
approaches cannot physically be equivalent to the exact
problem.

The work done by Chen and Mills exactly solved the
NLFP problem for an absorptionless Kerr-type mediumf7g.
The proper resolution method was to assume a general com-
plex field within the medium, disregarding the concept of

counterpropagating waves. Chen and Mills derive a two-
coupled-equation system for the field amplitude modulus and
phase together with general boundary conditions, thus ob-
taining an analytic-transcendental solution for the transmit-
tance of the NLFP resonator.

On the other hand, their work permitted us to note an
implicit difference between the time-averaged Poynting vec-
tor modulus, i.e., the electromagnetic radiation intensityI
and the squared-field amplitude modulussuEu2d inside the
nonlinear medium. If the nonequivalence of these magni-
tudes were true, it could change certain well-established fun-
damental concepts in classical electrodynamics. This fact
motivated us to develop a different approach to wave propa-
gation in nonlinear media inside the Fabry-Pérot framework,
called theS formalism. It introduces a variable related to the
time-averaged Poynting vector which states that its magni-
tude can be nonequivalent to the squared-field amplitude
modulus, contrary to the common usage. Furthermore, theS
formalism presents two important advantages: it permits one
to directly monitor the radiation intensity within the medium,
and it avoids approximations, such as the SVEA, simplifica-
tion of boundary conditions, and so on.

The fact that the time-averaged Poynting vector modulus
is nonequivalent to the squared-field amplitude modulus, as
the S formalism will show, implies that the nonlinearity of
Kerr-type media is not proportional to the intensity, which is
contrary to what has been established to date. This assertion
leads to the following question regarding the modelling of
the NLFP resonator: Is it a Kerr-type nonlinearity, or does it
vary proportionately to the intensity? As this question does
not have a definitive answer, the existence of the latter can-
not be denied. Then, we define thePoynting mediumas a
medium where the nonlinearity is proportional to the inten-
sity. Thus, our objective is to solve the Poynting NLFP prob-
lem through theS formalism, comparing the resultant trans-
mittance with that obtained for a Kerr NLFP resonator to
remark the nonequivalence between squared-field amplitude
modulus and radiation intensity.

In Sec. II, we derive theS formalism in the following
form. First the time-averaged Poynting vector assuming har-*Corresponding author. Electronic address: agl@fisica.ufpb.br
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monic fields is calculated. Then, a dimensionless variable
that is proportional to intensity is introduced. Thus, a set of
field evolution differential equations and the general bound-
ary condition equations on this field variable are obtained,
which constitute theS formalism. In Sec. III, our approach is
applied to derive the transmittance for the Poynting NLFP
resonator and the results compared with those obtained for a
Kerr NLFP resonator. A brief discussion about the possibility
of existence and observation of Poynting media is given.
Finally, in Sec. IV, we conclude.

II. THE S-FORMALISM APPROACH

Referring to Fig. 1, we start writing the linearly polarized
transversal harmonic electromagnetic fields of frequencyv
as

E,sz,td = 1
2fE,

vszde−ivt + c.c.gî , s1ad

H,sz,td = 1
2fH,

vszde−ivt + c.c.gĵ , s1bd

whereE,
vszd andH,

vszd are the non-time-dependent complex
amplitudes for,=I , II , III. From region I, a plane wave of
amplitudeE0 and wave vectork0 impinges perpendicularly
on a nonmagnetic, isotropic, and spatially nondispersive me-
dium of thicknessd sregion IId. The optical field is assumed
to maintain its polarization along this region so that a scalar
approach is valid. The reflected and transmitted plane waves
have amplitudesrE0 andtE0 with r andt the complex reflec-
tion and transmission coefficients, respectively. Then, in re-
gions I and III the spatially-dependent complex amplitudes
are given by

EI
vszd = E0seik0z + re−ik0zd, s2d

EIII
v szd = E0te

ik0z. s3d

Similarly to Ref.f7g, in region II, we write down the follow-
ing ansatz for the spatially-dependent complex amplitude of
the electric field:

EII
vszd = E0Eszdeifszd, s4d

where the dimensionless amplitudeEszd and phasefszd are
both real functions ofz.

The time-averaged Poynting vectorkE,sz,td3H,sz,tdl
can be easily calculated with the aid of Faraday’s law, giving

kSl, =
1

2m0v
ImHfE,

vszdg* ]E,
vszd
]z

Jk̂ , s5d

wherem0 is the vacuum permeability. From this expression
we calculate the intensities for the three regions:

kSlI = I0s1 − ur u2d, s6ad

kSlII = I0k0
−1E2szd

]fszd
]z

; I0Sszd, s6bd

kSlIII = I0utu2, s6cd

whereI0=k0E0
2/ s2m0vd is the incident intensity. In region II,

Eq. s6bd defines the dimensionless field variable

S; k0
−1E2]f

]z
, s7d

directly related to the intensity inside the medium, which
will characterize theS formalism. From Eq.s7d it is clear that
if f is not a linear function ofz, as often happens in nonlin-
ear media, thenS andE2 are nonequivalent.

The next step is to derive the NLHE in terms of the clas-
sical field variablessE ,fd, and transform it into a set of
equivalent equations in terms ofsE ,Sd. The NLHE is derived
from the macroscopic Maxwell equations complemented by
appropriate constitutive relations. We assume that the polar-
izationP and current densityJ vary only in the electric field
direction with frequencyv, neglecting higher harmonics, and
their spatially-dependent complex amplitudes satisfy the fol-
lowing constitutive relations:

PII
vszd = e0xgenfz,EII

v,HII
vgEII

vszd, s8d

JII
vszd = sgenfz,EII

v,HII
vgEII

vszd, s9d

wheree0 is the vacuum permittivity andxgenandsgenare the
generalized susceptibility and conductivity, respectively,
which are real and contain the linear as well as a possible
nonlinear medium response. Note that the constitutive rela-
tions are not explicitly written since cases could exist where
it is not possible to describe the nonlinear polarization and
current density by the classical electric field power expan-
sion. Thereby, the scalar NLHE is

F d2

dz2 + k0
2s1 + xgend + ivm0sgenGEII

vszd = 0. s10d

This equation constitutes the starting point to study several
linear and nonlinear monochromatic wave propagation phe-
nomena within the Fabry-Pérot framework. Substituting Eq.
s4d into Eq. s10d and using Eq.s7d, we derive the following
set of spatial evolution equations for the field variablesEszd
andSszd:

d2E
dz2 + k0

2Ss1 + xgenfz,E,SgdE −
S2

E3D = 0, s11ad

FIG. 1. A harmonic plane wave strikes a nonlinear Fabry-Pérot
resonator, to be reflected and transmitted. Regions I and III consti-
tute, for simplicity, the same linear dielectric mediumse.g., aird.
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dS

dz
+

v

k0
m0sgenfz,E,SgE2 = 0. s11bd

To guarantee the physical content of the solution, these
equations must be necessarily complemented with the fol-
lowing boundary conditions: the continuity of the tangential
components of the electric and magnetic field at the inter-
faces. The general boundary conditions were rigorously de-
rived in Ref. f7g: four equations as functions ofsE ,fd at z
=0 andd which, by using Eq.s7d, are transformed into three
equations in terms of the variablessE ,Sd to give

SEs0d +
Ss0d
Es0dD2

+ SU 1

k0

dE
dz
U

z=0
D2

= 4, s12ad

Ssdd − E2sdd = 0, s12bd

UdE
dz
U

z=d
= 0. s12cd

From Eqs.s6d and s12d, the transmittance is obtained as

T = utu2 = Ssdd, s13d

and the energy conservation is guaranteed thorough the ex-
pression

ur u2 + utu2 = 1 − fSs0d − Ssddg. s14d

This equation establishes that the reflectance and transmit-
tance are limited by the boundary values of the time-
averaged Poynting vector. For a nonabsorbent mediumSsdd
=Ss0d, then ur u2+ utu2=1.

Equationss11d and s12d represent theS formalism; they
were derived without assuming approximations such as
counterpropagating waves, the SVEA, simplifications of the
boundary conditions, and so on. Also, note that Eq.s11bd
represents the time-averaged Poynting theorem applied to the
problem of harmonic fields simplifying the interpretation of
sgen as the dissipation properties of the medium. In particu-
lar, whensgen=0, the dimensionless intensityS is a constant
fixed by the boundary conditions. Furthermore, throughSszd
it is possible to monitor directly the intensity along the me-
dium as a function of the spatial coordinate, as opposed to
using the conventional formalism.

The S formalism is useful to analyze the linear case as
well as the nonlinear one. Before studying the latter, i.e., the
comparison between the Poynting and Kerr media in an ef-
fort to show the explicit difference betweenS sor Id andE2

sor uE2ud in nonlinear media, we refer to the linear case. Ac-
cording to our analysisf8g, there are only two situations
where the relationshipI =cteuE2u holds true. First, a single
plane wave propagates in an infinite or semi-infinite linear
dielectric characterized bysgen=0 andxgen=xs1d wherexs1d

is the linear susceptibility. Under these conditions, Eqs.s11d
relate the constantsS andE by S=s1+xs1dd1/2 E2. Second, a
single plane wave propagates in a semi-infinite linear ab-
sorber characterized byxgen=xs1d andsgen=s wheres is the
Ohmic conductivity and such thatSszd~E2szd, both being
proportional to a decreasing exponential function ofz. On
the contrary, when the medium is finite, e.g., a Fabry-Pérot

resonator with boundary conditions at the interfaces,S is no
longer equivalent toE2, not even for the linear dielectric
case, becauseS is a constant andE2 is an oscillating function
of z f8g.

III. THE POYNTING MEDIUM

A. Constitutive relations and transmittance results

At this point, we introduce the Poynting medium by the
following constitutive relations:

xgen= xs1d + gI0Sszd, s15d

sgen= 0, s16d

whereg is the nonlinear coefficient. Equationss11d have a
simple analytical solution given by

Sszd = S0, s17d

Eszd =ÎS0

2
FS1 −

k0
2

k1
2Dcosf2k1sz− ddg + 1 +

k0
2

k1
2G , s18d

where g.0 and k1
2=k0

2s1+xs1d+gI0S0d. The constantS0 is
fixed by

S1 −
k1

2

k0
2DE2s0d + S3 +

k1
2

k0
2DS0 − 4 = 0. s19d

Combining Eqs.s18d and s19d, the transmitance can be ex-
pressed in a similar fashion as for the linear Fabry-Pérot
resonator as

T =
1

1 + F sin2sk1dd
, s20d

whereF=k0s1−k1/k0d2/ s4k1d, carefully noting that Eq.s20d
is a transcendental expression sincek1 depends onS0.

Now, we compare the transmittance results for the Poyn-
ting and Kerr media. The latter are defined by

xgen= xs1d + gI0E2szd, s21d

sgen= 0. s22d

The Kerr NLFP transmittance results were taken from
Ref. f7g. Figure 2 showsT against the nonlinear parameter
gI0 for two different values ofxs1d. Figures 2said and 2sbid
correspond to the Poynting and Kerr medium, respectively.
From these figures, it is apparent that the transmittance of the
Poynting NLFP as well as of the Kerr NLFP resonator is
multistable. However, for increasing values ofxs1d, the peak
transmittance separation diminishes for the Kerr medium
while it increases for the Poynting medium. Also, the Kerr
multistability appears for the smallest values of the nonlinear
parametergI0. The transmittance difference of the two media
emphasizes theI and uEu2 nonequivalence. Figure 3 depicts
the dependence ofT on the dimensionless thicknessk0ds1
+xs1dd1/2/ s2pd enhancing the nonlinearity difference of the
Polynting and Kerr media. Note that the departure from an
Airy-type function for the Kerr medium is stronger than that
for the Poynting medium.
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On the other hand, Fig. 4 shows that the Poynting nonlin-
ear susceptibilityxgen−xs1d has a constant value along the
mediumsz coordinated. In return, the Kerr nonlinear suscep-
tibility varies periodically. This fact implies the formation of
a phase grating in the Kerr medium in contrast to the Poyn-
ting medium. Perhaps this substantial difference can be mea-
sured, and this could be the starting point to experimentally
identify a Poynting medium.

B. Transformation properties under spatial
inversion and time reversal

It is a fact that several unusual types of nonlinearities
were predicted before its experimental observation, as was
remarked, for example, in the pioneer works of Baranovaet
al. f9g. With the aim to elucidate the isotropic medium re-
quirements to observe these phenomena, those authors
pointed out the necessity of an analysis of transformation
properties of electromagnetic quantities under rotation, spa-
tial inversion, and time reversal. Therefore, this symmetry
analysis is also necessary to delimit the Poynting medium
requirements.

The magnitude that characterizes the electromagnetic re-
sponse of a Poynting medium is their nonlinear susceptibility
xsPd which is linear on the time-averaged Poynting vector
kSl, as follows from the constitutive relationsfEq. s15dg. In a
general form, it can be written as

xi j
sPd = gi jkkSsr ,tdlk, s23d

with i , j ,k=x,y,z and

kSsr ,tdlk =
1

T
E

t

t+T

fEsr ,t8d 3 Hsr ,t8dgkdt8, s24d

whereE andH are harmonics of periodt=2p /v and time
interval T@t. The susceptibility tensor transforms as even
under spacial inversionr →−r and time reversalt→−t, con-
trary to the Poynting vector and its time-averaged value,
which transform as odd under spatial inversion and time re-
versal, i.e.,kSsr ,tdl→−kSs−r ,tdl andkSsr ,tdl→−kSsr ,−tdl,
respectivelyf10g. Then, a medium possessing a linear con-
nection betweenxi j and kSlz should benoninvariant with
respect to spatial inversion and time reversal. Otherwise, the
space-time symmetry will be violated in the constitutive re-
lation fEq. s23dg.

The lack of parity symmetry under inversion of coordi-
nates is a property of materials without inversion center, i.e.,
Poynting nonlinearity should be only possible innoncen-
trosymmetricmaterials. There are several material candidates
to possess a Poynting nonlinearity, such as, for example, cu-
bic crystals with zinc-blende structure like GaAs, InSb, and
others. In these materials intensity-dependent transmission
and bistability were experimentally observedf11g. Also, iso-
tropic homogeneous liquids formed by nonracemic mixtures
or solutions of mirror-asymmetricschirald molecules with
strong nonlinear optical susceptibility, as products of several
nonlinear processesf12g, are also feasible systems to possess
a Poynting nonlinearity. In addition, parity under time rever-
sal should be violated in Poynting media. This means that
weak dissipative process that converts field energy into heat
is necessary to remove the rule relating to thet→−t trans-
formation. For example, either very weak absorbtion or cur-
rent flow caused by an external quasistatic field, which basi-
cally do not affect the wave propagation at light frequencyv,
would ensure medium noninvariance under time reversal.

We believe that, although experimental work is required,
the above preliminary analysis could stimulate further dis-
cussion regarding the existence of Poynting media.

IV. CONCLUSIONS

In summary, we derived a formalism in terms of dimen-
sionless variables related to the time-averaged Poynting vec-
tor and field amplitude modulus within the Fabry-Pérot
framework. TheS formalism shows explicitly that the energy

FIG. 3. Transmittance against dimensionless thickness forsad
Poynting andsbd Kerr medium withxs1d=5.25 andgI0=2.

FIG. 4. Nonlinear susceptibility against dimensionless spatial
coordinate for each of the three solutions compatible with the
boundary conditions. Continuous line: Poynting medium. Broken
line: Kerr medium. The parameter values aregI0=9, xs1d=1.25, and
k0d as defined in Fig. 2.

FIG. 2. Transmittance against nonlinear parameter forsaid Poyn-
ting andsbid Kerr medium withk0d=2p. For i =1, xs1d=1.25; and
i =2, xs1d=5.25.
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intensity and squared-field amplitude modulus are only
equivalents for a single plane wave propagating in a linear
infinite or semi-infinite medium. Otherwise, they are non-
equivalent. Additionally, theS formalism presents two im-
portant advantages: it permits one to directly monitor the
time-averaged Poynting vector in the medium and it avoids
approximations, such as the SVEA, simplification of the
boundary conditions, and so on. To emphasize this non-
equivalence we introduce the Poynting medium, whose non-
linearity is proportional to the intensity instead of the electric
squared-field amplitude modulus as in the Kerr medium. We
find marked disagreement in the transmittance of the two
media, which support the differences betweenI and uEu2.
Also, a space-time symmetry analysis shows that the Poyn-
ting nonlinearity should only be possible in noncentrosym-
metric materials.

The statements and analysis pointed out here constitute an
advance on theoretical views of basic concepts in electrody-
namics. TheS formalism could be important in problems

where the time-averaged Poynting vector must be rigorously
monitored as in photoconductor or photorefractive materials.
Further to this particular case studied here, this approach
leaves open the possibility of physical results in actual topics
on nonlinear wave propagation such as spatial solitons, wave
mixing, and others. Finally, we leave open the possibility that
experimental techniques, based on intensity-dependent phase
changes of a Gaussian beam such as theZ-scan technique
f13g, might not truly measure Kerr-type nonlinearity. On the
contrary, they could be measuring a Poynting-type nonlinear-
ity instead.
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